Algebraic K-theory and Abstract Homotopy Theory

نویسندگان

  • ANDREW J. BLUMBERG
  • MICHAEL A. MANDELL
چکیده

We decompose the K-theory space of a Waldhausen category in terms of its Dwyer-Kan simplicial localization. This leads to a criterion for functors to induce equivalences of K-theory spectra that generalizes and explains many of the criteria appearing in the literature. We show that under mild hypotheses, a weakly exact functor that induces an equivalence of homotopy categories induces an equivalence of K-theory spectra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-topological K-theory Using Function Complexes

Abstract. The semi-topological K-theory K ∗ (X) of a quasi-projective complex algebraic variety X is based on the notion of algebraic vector bundles modulo algebraic equivalence. This theory is given as the homotopy groups of an infinite loop space K(X) which is equipped with maps K(X) → K(X), K(X) → Ktop(Xan) whose composition is the natural map from the algebraic K-theory of X to the topologi...

متن کامل

On the Exponent of Triple Tensor Product of p-Groups

The non-abelian tensor product of groups which has its origins in algebraic K-theory as well as inhomotopy theory, was introduced by Brown and Loday in 1987. Group theoretical aspects of non-abelian tensor products have been studied extensively. In particular, some studies focused on the relationship between the exponent of a group and exponent of its tensor square. On the other hand, com...

متن کامل

Derived Algebraic Geometry XIII: Rational and p-adic Homotopy Theory

1 Rational Homotopy Theory 4 1.1 Cohomological Eilenberg-Moore Spectral Sequences . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 k-Rational Homotopy Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Rational Homotopy Theory and E∞-Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Differential Graded Lie Algebras . . . . . . . . . . ...

متن کامل

Bivariant algebraic K-theory

We show how methods from K-theory of operator algebras can be applied in a completely algebraic setting to define a bivariant, M∞-stable, homotopy-invariant, excisive Ktheory of algebras over a fixed unital ground ring H, (A, B) 7→ kk∗(A, B), which is universal in the sense that it maps uniquely to any other such theory. It turns out kk is related to C. Weibel’s homotopy algebraic K-theory, KH....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007